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Stability Test for a Related Routh-
Hurwitz Problem

BERTRAND T. FANG*
The Catholic University of America, Washington, D. C.

Introduction

THE necessary and sufficient conditions for the asymptotic
stability of a system described by a set of linear ordinary

differential equations with constant coefficients are given by
the well-known Routh-Hurwitz criterion or by the existence
of a quadratic Lyapunov function. Corresponding condi-
tions for the stability (i.e., none of the characteristic roots
have positive real parts, some may be distinct pure imagi-
naries) are sometimes of interest. It is true for practical
systems that asymptotic stability is a much more important
requirement than is stability. But the latter concept often
arises in the idealized modeling of physical systems, for in-
stance, in the rotation of a torque-free rigid body, and in the
classical theory of the libration of the moon.

Necessary and sufficient conditions for stability may be ob-
tained by an extension of the method used in the derivation
of the Routh-Hurwitz criterion. Certain theorems in this
connection are given in Lehnigk,1 although the method is not
well-documented. The purpose of the present article is to
outline a step-by-step stability test procedure, utilizing sim-
plifications provided by some recent results.

Consider a dynamic system with the following real charac-
teristic equation

f(x) = xn + a,x*~l + a2xn~2 + . . . + an = 0 (1)

If an = 0, Eq. (1) has at least a zero root, and can be reduced
to a lower order system immediately. Therefore, assume an
= 0 for convenience. Also define as special roots of Eq. (1)
any roots x = ±#*.

It is useful to decompose f(x) in the following two ways:

1) /(#) = h(x*) + xg(xz)
fl\X ) — G/n ~T~ dn—%X |" . . . \^)

2) f(x) = p(x) q(x) -

where p(x) is a polynomial without any special roots and q(x)
= s(x2) is a polynomial with special roots only. If f(x) has
any pure imaginary roots, q(x) will not be an identical con-
stant. The decomposition Eq. (3) is the crux of the problem.

Once this is accomplished, it follows the system; Eq. (1) is
stable if and only if all roots of p(x) have negative real parts
and all roots of q(x) are distinct pure imaginaries, or equiva-
lently, s(y) has only distinct negative roots. With these as
preliminaries, a step-by-step stability test procedure is out-
lined in the following section.

A Step-by-Step Stability Test
1) If f(x) has only special roots, i.e., if it takes on the form

s(xz), go to step 5 below.
2) If f(x) is not of the form s(x2), then if any of the coeffi-

cients ai (i = 1,2,.. .n) is negative or zero, the system is un-
stable, no need to proceed further.

3) Define, as usual, Hurwitz determinants Ai,A2,. . . An-i
as the successive principal minors of the following (n X n)
Hurwitz matrix:

o>i 0,3 0,5 0
1 0,2 0,4 0
0 di #3 0
0 1 a2 - 0

0 0 0 - an-i 0
0 0 0 - an_2 an

If n is even, evaluate the Hurwitz determinants As, As, . . .
An-i. If n is odd, evaluate the Hurwitz determinants A2,
A4, . . . An-i. a) If any one of these Hurwitz determinants is
negative, the system is unstable, no need to proceed further,
b) If all Hurwitz determinants are positive, the system is
asymptotically stable, no need to proceed further.

4) If the Hurwitz determinants satisfy the following con-
dition,

An-l = An_3 = . . . = An-2r+l = 0, An-2r-l * 0 (4)

the system can still possible be stable, but not asymptotically
stable. Now p(x) must be a polynomial of degree n — 2r,
and the Hurwitz determinants of p(x) are identical to An-m,
m = 2r, 2r -\- 1, . . . . It follows: a) if in addition to the
conditions of Eq. (4), A»_2*-i = 0 for some t > r, then
p(x) has some root with a positive real part and the system is
unstable, no need to proceed further, b) If in addition to
conditions (4), A«-2<-i > 0 for all t > r, then s(y = #2)
= yr + b\yr~l + b2yr~2 . . . + br is obtainable as follows. Re-
place the last element of the last row of the Hurwitz de-
terminant An_2r-i by g(y), the element above this by
h(y) the next element above by yg(y), the next element above
by yzg(y), etc. The resulting determinant is equal to s(y),
multiplied by a constant.

a) If any of the coefficients bi (I = 1,2.. .r) is negative
or zero, q(x) has some root with positive real part, the system
is unstable, no need to proceed further, b) Form the poly-
nomial

ry2r-l _|_ 5 r̂ _ l)^2r-3 _j_ fr^T — 2)i/2r~5 + . . . + &r-l2/

together with its associated (2r + 2r) Hurwitz matrix

- - 2 )r b,(r - 1)
1 61
0 r
0 1

0 0
0

r - 1)
61

0
0

0
0
0
0

br-l 0
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and evaluate the corresponding Hurwitz determinants. If
all the Hurwitz determinants A3 = bi2(r — 1) — 262r, As, A?,
. . . A2r-i are positive q(x) has only distinct pure imaginary
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roots and the system is stable. Otherwise the system is un-
stable. The above steps exhaust all possibilities. A brief
discussion of these is given below.

Discussion

Test step 1 is trivial. The truth of test step 2 follows from
the decomposition Eq. (3) and the application of the well-
known condition for asymptotic stability to p(x) and s(z2).
Step 3 is well-known. Step 5a is again an application of the
necessary condition for asymptotic stability to s(y). Step
5b is an application of a theorem of Fuller.2 The method to
determine s(y) in step 4 and the recognition that its Hurwitz
determinants are identical to An_m are new and recent re-
sults.3-4 The proofs lie in the identification of the Hurwitz
determinants with the resultants and subresultants of the two
subpolynomials h(x*) and g(x*) of the characteristic poly-
nomial /(#). Although this identification was made inde-
pendently by the author,3 a literature search subsequently re-
vealed Fuller2 seems to be the first author to make this identi-
fication by going back to the almost forgotten early work of
Trudi. Householder4 also discussed this identification in con-
nection with the more general problem of a complex charac-
teristic polynomial using the theorems of Trudi and Netto.
Although Householder's work is not addressed directly to the
present problem, his result is applicable if one converts the
real polynomial f(x) to a complex polynomial w(z) by the
transformation x = iz. Finally it should be pointed out the
test steps outlined are essentially based on the Routh-Hur-
witz algorith. It is conceivable other equivalent algorithms
such as those suggested by Duffin5 may be used to advantage
in some of the intermediate steps.

Example

f(x) = x9 + 3z8 +

For this example,

h(x2) = 3x

+ -if*2 + x + 1

g(x*) = x8 + fz6 + 7x* + fa;2 ± 1

3
1
0
0
0
0
0
0

23/2
9/2
3
1
0
0
0
0

14
7
23/2
9/2
3
1
0
0

13/2
9/2
14
7
23/2
9/2
3
1

1
1
13/2
9/2
14
7
23/2
9/2

0
0
1
1
13/2
9/2
14
7

0
0
0
0
1
1
13/2
9/2

0
0
0
0
0
0
1
1

An-1 = A8

Straightforward computations give

As = A6 = A4 = 0,

Ai = 3 > 0, A2 =

s(y = z2) = 1/2

3 23/2
1 9/2

h(y)

= 2 > 0, A3 = 2 > 0,

a6 + I*4 + I*2 + 1
An application of test step 5 shows the necessary and suffi-
cient criteria for the stability of a system with the character-
istic equation X6 + 6iZ4 + b2X2 + &s = 0 are 61 > 0, 62 > 0,
63 > 0, 6i2 - 362 > 0 and &2

2(V - 462) + 6i63(1862 - 46i2) -
2763

2 > 0. Obviously s(xz) given above satisfies these cri-
teria and the system Eq. (5) is stable, although not asymp-
totically stable. It is now straightforward to show that in-
deed f(x) = (x* + 3z2 + x + 1) • (x6 + |x4 + |o;2 + 1) and
the Hurwitz determinants of p(x) = x3 + 3z2 + x + 1
with Ai, A2, and As given above.
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Mean Curvature of a Deformed
Spherical Surface

L. K. RUSSELL*
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WHEN studying the equilibrium configuration of liquid
drops under the action of surface tension, it is necessary

to compute the mean curvature, #(0,$), at a given point on
the surface. The difference in pressure across the surface
of the drop, AP, is given by

Ap = aH = a/2(l/Ri + 1/R)
where Ri and R% are the principal radii of curvature at a point
on the surface. An expression for (l/R\ + 1/R*) is derived
in Landau and Lifschitz1 for the case of a surface given in
spherical coordinates as T/ (#,</>). This expression, however,
is a perturbation expansion about a sphere, good only to first
order. In order to obtain higher order expansions we derive
an exact analytical expression for the mean curvature using
techniques of Differential Geometry.2 Although useful in
engineering applications, this result appears not to have been
previously published.

Let the surface be given by the function i?(0,0) where 0,$
are the usual polar angles and rj the distance from the origin.
Then in Euclidean 3-space, the surface is represented by the
vector function:

= (77 sin0 sin0 cos0)

At a point on the surface there is a tangent plane spanned
by the two vectors
5X/c)0 i

and

= ([ry cos0 +
[T? cos0 +

e sin0] cos0,
sin0] cos0 — 77 sin0])

= ([no — 77 sin0,
7^ cos0])

A unit normal vector exists with respect to this plane.
Since by convention a sphere has positive curvature the unit
normal will be taken as pointing inwards, towards the center
of the sphere. Thus the unit normal is:

X3 = -(Xi X X2)/|Xi X X2|
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